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SUMMARY

Part III of this series of papers developed the theory of high- ,

eccentricity orbits (e >0.2) in an atmosphere having an exponential varia-

tion of air density with height, that is, with the density scale height H

taken as constant. Part IV derived the appropriate theory for low-

eccentricity orbits (e <0.2) in a more realistic atmosphere where H

varies linearly with height y (and dH/dy <0.2). The present eport

treats the orbits of Part III when they meet the air drag specified by the

atmospheric model of Part IV. Equations are derived showing how the peri-

gee height varies with eccentricity, and the eccentricity varies with time,

over the major part of the satellite's life. It is shown that the theory

of Part III remains valid, to order a2 , if H is evaluated at a specific

height above perigee. J .,
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1 INTRODUCTION ,

Part I of this series of papers gave the theory for the contraction of Earth '.

satellite orbits of eccentricity e < 0.2 under the influence of air drag in a spheri-

cally symnetrical atmosphere, over a single revolution and also over the complete life-
2

time. Part II did the same for an oblate atmosphere . In Part III the theory of Part I-P

was extended3 to orbits of high eccentricity, 0.2 < e < 1 . In Parts I to III the air

density was assumed to vary exponentially with height, having a constant density scale

height H : in Part IV the theory was developed4 , for e < 0.2 , on the assumption that

instead of being constant, H was a linear function of height y . Parts V and VI took

account of the day-to-night variation in air density 5 '6 , again for e < 0.2 , and revert- ,.

ing to constant H ; Part VI was devoted to the special conditions for near-circular ,... .

orbits. Subsequently the theory has been extended by Swinerd and Boulton7 '8 to cover the

combined effects of oblateness, day-to-night variation and variation of H with height,

for e < 0.2 , over a single revolution.

The present Report can be looked on as a marriage between Part III and Part IV, and %

applies for orbits of high eccentricity (0.2 .< e < 1) in an atmosphere where H varies

linearly with height. The theory is required for three reasons:

(a) In the real atmosphere H is not constant, but does vary almost linearly

with height; so the constant-H theory of Part III may be inadequate in practice, ,

and the extent of the inadequacies is unknown until the new theory has been _,___-

developed.

(b) The theory is needed in interpreting the measurements of geophysical para-

meters from orbital changes for orbits with eccentricity greater than 0.2: without

it, the height at which the measurements apply remains uncertain. "- -

(c) In orbit determination programs, such as PROP9 , a constant-H theory is used

in the model, and the new theory will allow the best constant value of H to be

selected for a particular orbit determination.

2 ASSUMPTIONS

The theory is developed under the nine assumptions listed below. These assumptions

are the same as in Part I, except for (c) and (h) and a minor modification in (e).

(a) The atmosphere is spherically symmetrical. ,-_..,.

.'.

(b) The air density p at a given distance from the Earth's centre does not vary

with time.

* (c) The air density p and the quantity - p/(dp/dr) , which will be called the

density scaie height and denoted by H , vary with distance r from the Earth's

centre in the manner specified in section 3. r

(d) The resultant aerodynamic force on the satellite acts in the direction

opposite to the velocity V of the satellite relative to the ambient air, and may

be taken as ,v SC where C is a drag coefficient based on an effective .. ,
D D 0

cross-sectional area S, and SCD  is assumed constant. "' %

.. ' , ', L ''i-"D
%',
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(e) The atmosphere rotates at a constant angular velocity w not very different J" Z

from that of the Earth.

(f) The Earth's gravitational potential is taken as that of a point mass at its

centre, so that the unperturbed orbit is an ellipse in a plane passing through the

Earth's centre.

(g) During one revolution the action of air drag changes the orbit by only a %4%

small amount, whose square can be neglected.

(h) The orbital eccentricity e lies within the limits 0.2 4 e < I .

i) Lunisolar perturbations are ignored.".*"

The assumptions have been discussed in Part I, so little more needs to be said

here, but three points do deserve mention. First, high-eccentricity orbits are not much

affected by atmospheric oblateness, so that assumption (a) is not objectionable. Second, .

the neglect of the asymmetrical components of the Earth's gravitational field, particu-

larly the third harmonic, is questionable and it is intended to develop methods for

taking account of this effect in a subsequent paper. (For a spherically symmetrical
atmosphere the effects of the much larger second harmonic are not important.) The third,

and most important, of the simplifications is the neglect of long-term lunisolar pertur-

bations, although their effect on the single-revolution results is negligible. The

problem arises over months or years, when lunisolar perturbations can be very large for .
high-eccentricity orbits. However, the effects are then to some extent self-eliminating, Li "-4A

because the perigee will either rise to heights where the drag is obviously negligible,

or will be forced down to a height where the satellite will decay. Even in the long

term, lunisolar perturbations to the perigee height are generally small for orbits of

eccentricity less than about 0.5, and the theory is often also still applicable at higher

eccentricities. At eccentricities higher than 0.8, however, lunisolar perturbations are

generally dominant and we shall regard 0.8 as the likely practical upper limit for e "

3 AIR DENSITY

The model for the variation of density p with distance r from the Earth's -.% %

centre is as specified in Part IV. The density scale height H is defined by the

equation

P iH dp/dr ' IN -

and if H were constant equation (1) could be integrated to give the simple exponential

variation of density with height,

0 p exp H) (2)

where suffix p denotes conditions at perigee, and in practice equation (2) is used only .-%,e.

for r > r . . ..
p %

S ~ 5-.

5--d t~
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Here we assume instead that *.'".

2 rr •.' "
ex -. pn (3) -.. '*.-Op IP + b r - rp exp.. .

%%

where H and b are taken constant during one revolution. On substituting (3) into % .s .,

% (1), and writing a = 2bH2  and r - rp)/Hp ,we find 0%%% P ' w b "

H = H + - = H + .(r- r , say, (4)p P)

where = 2bH2  (5) .P 1 + (n-n 2 )

At heights less than 2.4 H above perigee, ie for n < 2.4 the term n- I ) ,..

p • •

and if m is small it will usually be an adequate approximation to take a f . (The •

situation for n > 2.4 is discussed in section 5.) ,

In practice W is usually of order 0.1: Fig I shows the variation of H and of ,-

10
given by the COSPAR International Referenc? Atmospacre 1d72, for two levels of solar

activity. It is seen that a linear variation of H over a height range of 50-100 km is

a satisfactory approximation and that M does not exceed 0.2 unless the height falls e:

below 190 km (low solar activity) o, 230 km (high solar activity). In developing the

theory in this Report we shall assume p < 0.2 .

It may seem simplest to evaluate p at perigee height. But the subsequent " - '

analysis shows that the value of H at a height 1.5 H above perigee is of special

importance; so it is recommended that the numerical value of 0 at a height about 1.5 H
p

above perigee should be used. With this rule, Fig I shows that M < 0.2 if the perigee

height exceeds 160 km (low solar activity) or 190 km (high solar activity).

The expression (3) for o will be used for integrations over one revolution, to

obtain the changes in the orbital elements over one revolution. These equations are then

integrated over a long time-interval, perhaps nearly all the satellite's lifetime.

During this time there will be a variation in the perigee height and therefore in H "
p

For this further integration we assume, in accordance with (4), that ..

6 %% . %H =H + r (rp o 6
Hp0  ( -rp 0 ) , (6) -

where the second suffix 0 denotes initial values. If 0.2 < e 4 0.8 it is found that

0,< rp - r < 0.5 H Thus the change in H due to the ja term is never more than ..
p PO p.

10% if j < 0.2 , and the error of order j between b and M in equation (5) leads . ..

to an error of less than 1% in H . This is acceptable, because H is rarely known
P P

with an accuracy better than 2%. We shall therefore normally utilize equation (5) in the
2form b = p/2H , although the fuller version is needed at one point in the analysis.

4P..; %- . ,

5,4 . . ,W
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4 BASIC EQUATIONS

4.1 Air density

If a is the semi-major axis of the orbit, the radial distance r of a satellite

may be expressed in terms of the eccentric anomaly E as ,J-%

r a(1 - e cos E) , (7) % N

so that '

r - r = ae(1 - cos E) , (8)

and (3) becomes %

P= p1 + bx'(1 -cos E exp z(1 - E) (9)

where x = ae (10)

and z ± .e (11)

A typical value of a/H is 150, and so values of e greater than 0.2 correspond to
p

values of z greater than about 30. Equation (9) specifies p in terms of E

4.2 Changes in a and x

The changes in a and x per revolution, denoted by Aa and Ax respectively, % % %

are given by equations (12) and (13) of Part I as

2a* ( + e osE 2 d(1)"" " "'-.-..-...
2 (1 + e cos E)d

** Aa =-
2a6 -f __ dE (12)

(1 - e cos E)

1 (26 f + e cos E)-(

Ax ec2ao (cos E + e)PdE (13)I - e cos E . °-.-.-

0

on replacing the integrals from 0 to 27 by twice the integrals from 0 to T. Here

6 is a constant given by 6 = FSCD/m, where m is the mass of the satellite and F is

a factor which allows for the rotation of the atmosphere. From Part I,

0

cos i (14)

% %f '
where v is the velocity of the satellite relative to the Earth's centre and i the

inclination of the orbit to the equator. N

5 EVALUATION OF Aa and Ax

When e > 0.2 the integration of (12) and (13) can best be performed by express- "

ing E in terms of A where
... ."._o
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2
cos E = I - } /z , (15)

so that V

sin E = XD(I- T.)(16)

and -

dE = G 2( d) (17)

Substituting (15) into (9) gives .*4

= p + x X exp(- XA (18)

which may be expressed in terms of p by using equation (5), as

[ I4 2(2 " '"
Pp + l 4  

- AX2 (2 - 2 exp- 2) (19) e

2
We now make the simplifying assumption that the terms of order p in (19) can be

ignored, and take as our standard equation for density

p = pp(+ + i 4) exp(- X2) (20)-

From (19) the error in equation (20) is p J 2 - 2)exp(- A2 . For heights up - N

2p * 2 j
4

Jhto 2.4 H above perigee (X < 2.4 this is less than 0.125pP , so that the error in (20)

is less than 0.0 05p for p < 0.2. At heights more than 2.4 H above perigee, this
p p

error can be larger, having a maximum of O.025p at 4.7 H above perigee for p = 0.2
p p * .

at such great heights, however, the assumption of constant p has itself become invalid,

and it is pointless to pursue the effect of 0 P) terms into these rarefied realms. To

summarize, we are seeking a good approximation to the density in the region from perigee

up to about 2.4 H above, without being too much concerned about greater heights, wherep 2
the error could increase to 0.6p2p if p remained constant.

. If we substitute for cos E by (15), dE by (17) and p by (20), we find that
2 .

equations (12) and (13) can be expanded in powers of A /z to give

4 _2 20p()1(1 + e)f 
"  (8e - 3e2  11X2 2)4d :...: ..

Aa = - 3){.e+ + jiA4)exp- X2d(1 - e) 4z( - )  +  /0 + .
4 

-.

. . . (21)

x'(1,e+ 2) 2 K 4  6
* (22) 2 ) -2

% '. "

............................................................................................................(22........ (22
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where K and K are functions of e specified in Part III. Since 2z > 6 for

e > 0.2 the limit /2z in (21) and (22) may be replaced by , with relative error -%
-16

<10 -  
. Also if we write 'F.. 'h

f2n 2exp(X ~2dX Gn (23)
0

it is easily shown that Gn =(2n - 1)Gn I for n > 1 and, since G = 1 , we have

15 105

0 4 2 8 G3 -132

...... (24)

With the aid of (24), equations (21) and (22) may be integrated to give:

e) 1 - + ...... ..

2 2 0 + - 8e - 3e 2 ) - -72
Aa -06~ 0 e) 8z (0 e)+ - 64z(1 - e) +

.... (25)

Ax a a2p 6(2n) 0 +e)2 l 1 e ++e 3 - 15pJ(3 + 2 (2(6
PZ 0 - e) 8z(1-e) 64,(1 - e2 z ~) ~ (6

Here two terms inside the curly brackets, 3K1 4z
2  in (25) and 3K2 /4z

2  in (26), have

been omitted because it was found in Part III that they are less than 0.00005 if

H/r = 0.008 , for 0.2 < e < .
,; '-' 'F

6 PERIGEE DISTANCE AS A FUNCTION OF e

In Part III it was shown that when equation (25) with p = 0 is divided by -,

equation (26) with p = 0 , the 0 I/z 2 ) terms are less than 0.15/z 2 , that is, less than

0.00016. Hence ( t s l h.tes

Aa 1+ 1 -e 3j(1 - e) + ,5, (27) .. ".

-' 2z(I + e) + 4z(I + e) + 0 - (27).
% z,,2\

where the 0(0.15/z 2 ) term is taken as incorporating a term 0(,/z2) and 0.35,2/z is V

the maximum value of this term (when e = 0.2 and z =30). If we write % %

H1  = Hp +- ) , (28)

so that, as (4) shows, H is the value of H at a height -H above perigee,
p--.4'.

equation (27) reduces to J..%

.:fk :V'-.:
• - a ,' "
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da= 1+ -1 - e H1) + 0 (0.35~ 0.1 (29)

dx 2(1 + e)\x 0 z 2-z % 46

Thus, as with eccentricities between about 0.03 and 0.2, the constant-H equation

for da/dx may be used if H is evaluated at a height j H above perigee. Conversely,

if an orbit is accurately determined from observations and accurate values of da/dx, e

and x are available, equation (29) can be used to evaluate H at a height I H above

perigee.

This is a neat and useful one-revolution result; but, in order to integrate (29)

over the whole lifetime of the satellite, we have to take account of the fact that H1

is evaluated at a height, y1  say; which is slowly decreasing as r decreases. We

need a constant 'mean' value for H and fortunately an appropriate value can easily be

guessed. If we assume that e0 = 0.8 is the highest practicable value of e , the s.. r

maximum decrease in perigee height is, from Fig 3 of Part III, 0.5H - 0.5H (when-"''%'2"

e = 0.8 and e = 0.2 ). As the orbit spends more time at high eccentricity than at low -

(see Fig 8 of Part III), the mean perigee height is likely to be about 0.2H below the '

initial perigee when the orbit is contracting from e0 = 0.8 to e = 0.2 . At the other

extreme, when the orbit contracts very little, the mean perigee height is virtually equal

to the initial perigee height. Thus the mean decrease in perigee height during the life, .
e.

for all varieties of orbit, is likely to be between 0 and 0.2 H and may be taken

as 0.1 H with maximum error 0.1 H " Hence the most promising mean height for

evaluating H is at a height 1.4 H above the initial perigee. So we define .k w
p0

H* = H (1 + 1.4p) (30)
p0

.1-',.% -'.

and try it as a mean value for H .

Dividing (28) by (30), we find

H =H + P(0.1 - a) - (1.5 + 0.14) + 0 P (31)

r -r
where a = O H* (32)

The variation of a with e/e0  as given by Part III is shown in Fig 2: we need a simple

approximation for i in terms of e and we take .

r r P () eo . .-...-.-.:":
rp - 0.4 1±0.3e0  1 0.065 (33)

H*

which is shown by the broken lines in Fig 2. The error quoted is the maximum for,*

0.2 < e0 < 0.8 , and occurs when e0  0.8 and e/e0 = 0.4 . In view of (31) and (33),

equation (29) may be written

° % ... 5- ...

- .. ... .. ..... ... .. .. ... ... . ... .. . .... ...... . ..... . *- d; _ .-
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da 1+ 1e H* r( ) ( \I +Q35p'0 1~5
2( + ) l + -i 0.1\ (0. 0.3e 0 Z

*(34)

as th p 2term in (31) and the error term in (33) lead to 0-terms smaller than

0 (0.35p 2 /Z .In (34), we need to express e in terms of x .Since the perigee

distance decreases by less than IH*,

a = Q +x + (H*) (35)

where Qdenotes the initial perigee distance, -

=a 0 (I - eo) a0 -xO (36) .yy

From (35),

+ 1 +0(-L)(37)e x x z/

Eliminating e from (34) with the aid of (37), we find -

1[1a x + ~.1 +(0.4 -~ 0. 3e0 (1 -e)fQ pJe Q'(0.4 -0.3e,)

H x2(Q 0  2x)x 2(Q0  . .x...

.1'

+ 0~.52O1R P~.

. . . . . . . . . . . . . . . . . ......(38)

* Integrating (38) and collecting terms, we have A

rr*r x(Q0 + 2x) [ x(QO + 2xjxQ j0 3e 0x)

le e(O4 -0.3e)(ie- + 0 0.3-2n~ .

.. . . . . . . . . . . . . . . . . . ....(3)

The term in curly brackets may be written as o + O(pi) ,which in turn may be expressed

in the form (32), giving finally
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reX 0.15) e
r P inf 0) + } - (4 -3e)(3eo - - + O(,2 .15
p = T1 . + + e.1 100 k )(e P 9 1"1

...... (40)

where the 0 (P term appears because ln (x0 /x can be as large as 2.77 (when e0 = 0.8

and e = 0.2 ) and 2.77 x 0.35 = 0.97 The coefficient of M in equation (40) has a %

maximum value, when e = 0.2 of 0.Ole0 (4 - 3e0)e0- 1)(5e0- 1) , which is always less

than 0.054 if 0.2 < e 0 < 0.8 , and is less than 0.022 for 0.2 < e < 0.6 . The .. .

2 0term in (40) is thus of order 0.05P = 0.25P if p = 0.2 , and can be absorbed in the 'X
0(p2 term. 

•. .. 2

Equation (40), shorn of its p term, shows that the zero- theory can still be

used, with error 0() , if H is evaluated at a height 1.4 HP0  above the initial %

perigee height.

Note also that, from equation (23) of Part III, equation (40) may be rewritten as .. ' -

rp - r e0(1 + e) 4 p) !" "P 0 H 2 0.15)? .?

In + e) + 0 r (41)

This r -r ei 0/ o(-!L

This form is appropriate because H/4r (s- 0.002) is normally less than p-P

7 VARIATION OF e WITH t

From (25) and (26), we have " '"

2  (2T (i + e3( + 4e - 3e2
a~~ e ,'.x - e A a = p ( 1 a e e I2 ( - ) I + 0 ,, ' %

.-.........2)

The 1/z term in (42) has the value (0.34 ± 0.04)/jz(1 - e)t for 0.2 < e < 0.8

which is of order 0.01 or less for z(1 - e) > 30 . The term is dropped after integra-
tion in Part III, and here it is more convenient to drop it at once. On dividing by

At = T = T a/a0)2  .(43)
O0(

where T is the orbital period, equation (42) gives . ' .4'.-

de - 2a 0) H + e)7(1 - e) 3 .+ -4

0t T O  p p\a e 8 0(+  z 2

To proceed further, pH a/a must be expressed as a function of e . On

taking the reference distance r in equation (3) as the initial value 0 we may " -

express in terms of n in the form .
p PO~

N°•. ° '. '

.. ............... ......... ........ A Ad,< , ,



-.~ ~ Lz -- ik;Nw~r

12.

2p = p01 + bo 2 H*2 exp(oH*/Hph) ,(45) 
"'.-

2)
where a is given by (32). In the subsequent analysis the 0({)p terms will in the

end be neglected; but there are many of them, and we need to evaluate them numerically

to ensure that they do not accumulate to give an unacceptably large 0-term. The fuller iA

equation for b in terms of p and a is therefore needed, and from (5) it is

2 22H 2

p

On substituting for b from (46), eliminating H*/H by means of (30) and expanding

exp(1.4pa) as a power series, we can rewrite equation (45) as+ V20 2)"
Pp = p Ii + iu(1.4 + 0.5oa ) + 2 2(2.4 + 0.2o + 0.2502 + e a I (47).

From (6) and (30) we find

-0 5pa - o ( 0 7 + 0 .125a ) + 0 3 (48 ) .
_ ,. .. . . -

Multiplying (47) by (48) gives . *.

H p = p+ p (0.9 + 0 .5a ) + 0 ( . 1W ) exp , (49) '

or, on using (41) to evaluate exp a, %

H= 0H e (2 + e) '2 H 0.15)Opp ~~ ~ 1C 1e' eo  0. 5° (c 0 0. 2) +o 20 _ . (50) ,.
pH = P pO elI + e0 dF+Pji+050 .) 4 r / Lp 0  ,.. ..J.

% %

Here 0 < a < 0.5 , and so 0.5a(a - 0.5)1 < 0.075 , giving a term of

O(O.0 75p) = 0 (.3751) if p = 0.2 this term can be absorbed in the 0 2) term in

(50). Also, from (35)

a0  _ - e + (51) -

a 1- e 0  r (51
0

On substituting (50), without the small term, and (51) into (44), and using (33) to

approximate for a , we obtain

0%% % %
* '~~."1 .%'#

t- This corrects an error in the formula for b in Part IV, where the a and a 2are4
interchanged. I k



<' + > ' -e , + + ,( .+ - . -, *.

dt - To(1 - e0)\ 1 + e0 /1 -

+- %7 (52) 

.1k,-. .:,4.'

", % -

after dropping 0-terms that are smaller than others. -%.v,

Equation (52) now has to be integrated. As in Part III we write" -:+J

Il.

d0 P 0 + ).aIe (53) +"-"'0"3e"

= , . . -% ."

so that (52) becomes 4p cO a0e0HPC (533

%' IV(
de C (1 + e)2 e) 1 + j + + 0 ( 2  0 .3 (54)
dt 4 e. e. z.

where J and K are constants given by

J = 0.Be0 -0.025 (55) ,%$ ..

K = (0.4- 0.3eo)e. (56)

Preparing for integration, we rewrite (54) as %; - -I , ,.:

N. C dt (1 +0)2 e Ku * %•dT e + ip 1 + "" "j "
( + e)2 ( e)2  ( + e)2 (1 - e)

...... ( 47 41

On integration, (57) gives i . i

3- e V2 + ,,( e)./(1 + e) %

Ct I jj 3 +" ' % 'r,
V2z + /(I e)(l + _) %

- *e)/(l- e) 1, * ,, 3e 0/ /2_
0+e + e),/(l I e) V/2 12 +-( - e f2l-(1e

...... (58) Jb.

Equation (58) with p = 0 should be the same as equation (4.126) of Ref 11. Making the

comparison, we see that the term 0(0.3/z) in (58), which is evaluated numerically in

Part III, can be replaced by 0(H/5rp) 0(0.002)

b .-. pS. . '
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Equation (58) gives the variation of e with t , but in order to bring it to the .

same format as in Part III, we need to define t the lifetime of the satellite. In

Part III, tL was defined as the value of t for e = 0 , even though the equation for

t in terms of e was not valid for e < 0.2 . This arbitrary definition was quite

satisfactory for zero p , but causes difficulties when M is non-zero because the K-

term in (57) becomes large relative to the 'main' term as e - 0 . As the definition of ,. -

tL is arbitrary, and it needs to be approximately the satellite's lifetime, it should be

defined in such a way as to be consistent with the theory for e < 0.2 . This aim can be

achieved by defining tL as the value of t when e = 0 in equation (58) with the last

of the three terms in Kpi omitted. We then have .--",

3 + e V2 + V I - e . _o

( + JO) C - (1 + 201n -eo) - -- (2 ) . .

%.. -4. . .

L- ~ ) V / l+3 -1 HI. +...

+ 
-,O,, o eo )  1 (59)

":. ,?..': .. :

Subtracting (58) from (59) gives: "

( + J)C - t I + 0(i2 , = f(e) - KjjM(e) + L e0  - L(e) , (60)

3 + e 1 2 + V(1 - e)
where f(e) 3 )/( - e) - -61) / - (61)

as in Part III, and L(e) and M(e) are new functions defined by "%. .

3 /2 + /(1 - e) ()L(e) = 3-In (62) .." ,'''''
2/2 /2 - /(1 - e) (62)

M~) = 1 + 3e
M(e) ( + e)/( e) - 1 (63) %

As a guide to orders of magnitude, some values of f(e), L(e) and M(e) are listed in ...

Table 1.

Table I

Values of f(e), L(e) and M(e) V ,

e 0.2 0.4 0.6 0.8 "
_61

f(e) 0.0775 0.3235 0.8405 2.112 , W --

L(e) 1.581 1.305 1.021 0.6946 ,

M(e) 0.4907 1.029 1.767 3.224 %
- _____ _____ C ~ % 'f

ib.

% .4,.
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Putting e =e and t = 0 in (60) gives '. '..
"

(0 + Jj)Ct L -- (64)

Dividing (60) by (64), we have

1- + H f (e) - 4I~e - L (e) KpL (e 0 ) (5
1~ ] 1 + 0 f (e 0 ) - K1M (e0 ) f(e0 ) - KIJM(eG) (5

Equation (65) gives t/tL  in terms of e and e0  and Fig 3 shows how e/e0
varies with t/t for e = 0.4, 0.6 and 0.8 with p = 0 and p = 0.2 . The diagram

L0
shows that the effect of i on t/tL  is small and usually negligible. However, this -

does not mean that M has a negligible effect on e : equation (52) shows that de/dt

is increased, initially, by a factor (I + 3p/8) - that is 1.075 if p = 0.2 . If this

factor stayed constant, tL would be reduced by a factor 1.075 while the variation of e

with t/t would be independent of M ; in reality, however, the factor slowly increases
L

as time goes on, thus producing the small variation of e/e0  with M seen in Fig 3.

8 LIFETIME IN TERMS OF THE INITIAL DECAY RATE

To obtain the lifetime t in terms of T we go back to equation (25), but drop
L 4

the 1/z term within curly brackets, which is of 0(H/2r) , and the ji/z term, which

is smaller. Then we have ,', * .:

= (Aa)O H -i. (66)
Ta 0OPO a0e0  i-e)O

9031 e 1 ; + 0"+"_
This may be written with the aid of (53) as

=-- o(1 - )o 0) (7
1 + e 1 + + 0.(67)

0 e ep .~

Multiplying (67) by (64), we find '

0 0 0)\ 0) 3 2~,

0 '%. 8e),f.eit----f-eji
(68)). 8

...... (68)

where 0.212  represents the maximum value of the neglected cross-multiplied M terms. % %

This is the required equation for the lifetime in terms of the initial decay rate.

We first need to check that it is consistent with the low-eccentricity theory.

From the theory of Part IV, as revised in Ref 12, we find that, when e0 = 0.2 , the low- ..

eccentricity theL'y gives

.- 4 &-

. 4.....
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3e 0 T0  .2OtotL -12 1 0.187p (low-e

(69)

When equation (68) is evaluated at e0 = 0.2 we find
• • • % %

tL  4 0 1.24811 - 0.091P + 0 0.2p (70)
L 4T0  rp :%

2
These differ by 0.096p = 0.5p 2  if p = 0.2 and are therefore consistent. Thus %

equation (68) is acceptable even for e0 = 0.2 , when the whole lifetime is outside the

validity of the high-eccentricity theory. It is a fortiori acceptable for higher values

of e0 , because the added time from e = e0  down to e = 0.2 will be given correctly . '. \,

by the high-e theory. %

On evaluation, the term in curly brackets in (68) proves to have a value between

0.035 and 0.091 for 0.2 < eo 4 0.8 . Thus we can say that the constant-H lifetime --.. _.00.5 2 ) ,.- ,-' %"

formula, with p = 0 in (68), still applies, to 0 0.....

9 DISCUSSION AND CONCLUSIONS

The analysis of section 6 shows that the constant-H theory for the variation of

perigee height with eccentricity can still be used when H varies with height, if H is

evaluated at a height 1.5 H above the perigee height y (for single-revolution

results) or 1.4 Hp above initial perigee height y 0  (for long-term results). With %

this refinement, Fig 3 of Part III, giving perigee height in terms of e/e0 9 and Fig 4

of Part III, giving T/T0  against (e - e) , will remain valid. These results show f :

that, with high-eccentricity orbits, simple exponential density models can still be %

successfully used if the choice of value of scale height is adjusted appropriately. In

the analysis the value of (= dH/dy) is assumed to be less than 0.2, corresponding to .-

perigee heights y > 160 km for low solar activity or y > 190 km for high solar- '"
p p

activity.

The analysis of section 7 specifies the effect of non-zero p on the variation of .. -

eccentricity with time. Equation (52) shows that initially the rate of decrease of e "
increases by a factor of (1 + 0.375p). This factor becomes gradually larger as time goes

on and at its maximum, for an orbit with e0 = 0.77 and e = 0.2 , reaches (1 + 0.857p). 661W
When time t is expressed as a fraction of the total lifetime tL and e is plotted

LL
against t/t L 9the effect of p is generally negligible (see Fig 3). Consequently the i' [

variation of T/T0  with t/t is also virtually the same as in Fig 10 of Part III.

The curves of e/e0  versus t/tL exhibit quite strong curvature, and an orbital

parameter having a nearly linear variation with t would be welcome. As it happens, .

z/z0  fulfils this requirement well, and Fig 4 shows how z/z0  varies with t/tL .L''.

The full formula for lifetime in terms of the initial decay rate is given by Y

equation (68). On evaluating the p terms in this equation, it is founa that they are . . -
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2 %,.
of order 0.5p2 . Thus, although it is more accurate to use equation (68), the zero-pj

equation for lifetime is essentially valid to order p-2 A

In regard to past work the main implication of this Report is in confirming ideas,
3previously only surmised, (a) that H should be evaluated at a height IH above perigee

*_ in orbit determination, and (b) that, when scale height is determined from orbit analysis
over a short time interval, this is the height at which H applies.

The chief value of the theory for future work is in allowing more secure and

effective use of simple atmospheric models in programs for orbit determination and ma- . .- '

analysis. The Report shows how best to interpret these models in order to achieve more

accurate numerical results. 'j V 
"

"T,

,,a .a_ .. ,

W-.-

%

,, ".,j.% ". %

.

" " °

* . . ° a-

a.-.. .

* . '-, ,,a '-

-"a-- ,'oo'..... ... ..... .... ...... ... . .
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LIST OF SYMBOLS

a semi major axis of orbit .

b - .- - J(a - a2) + O(ui2) ;see also equation (5)2H 2

p 4

C see equation (53)

CD drag coefficient of satellite

D aerodynamic drag tangential to orbit N
Oi-.-,% ...' -"

e eccentricity of orbit ..-- ..

E eccentric anomaly

f(e) see equation (61) .--

2n2 ) . -. .

HI  value of H at a height yl ';

I , .. '- 4 .' .

H* Hp o1 + 1.4m).

4.. pO /w'

i inclination of orbit to equator ,-.0 -
_- .0

( )p

0v

K = 0.4 - 0.3e 0)e0 ).,,

L(e) see equation (62) ." : ,
40',. " . 'A

m mass of satellite 4 44

M(e) see equation (63) .', -

Q a(l - e) 
N

r distance from Earth's centre

R Earth's radius

S effective cross-sectional area of satellite

t time

tL approximate lifetime after e e

T orbital period of satellite %-",' .

v velocity of satellite relativ,_ to Earth's centre

V velocity of satellite relative to ambient air
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LIST OF SYMBOLS (concluded) . P

w angular velocity of atmosphere "'

x -ae

y height above Earth's surface

y =yp p

z = ae/H 
-

a ~~ 2bH 2 %
p .

FSC , .
-- D

m - . ,..-.~ -.. W
(r - rpI -- - -- , ,.

pp

X, - / zV CI - cos E)j . ---

f dH/dy

ffi 3.14159 ......

p air density ,.

o (rpo rp)/H*'"

Suffixes

0 initial value N

P value at perigee w .9

% .. %- %- %,

,,. -.'.' .,.- ,,,, S

%? .

%I,

- .. _'.
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